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  Arterial flutter and aneurisms, Sec. 9.8, p. 344  

  Narrowing arteries and high blood pressure, Sec. 9.9, p. 347  

  Arterial blockage, Ex. 9.12, p. 348  

  How insects can walk on the surface of a pond, Sec. 9.11, p. 350  

  Surfactant in the lungs, Sec. 9.11, p. 350  

  Lung pressure, Ex. 9.14, p. 351  

  Elastic properties of bone, tendons, ligaments, and hair, 

Secs. 10.2–10.4, pp. 365–374  

  Compression of the femur, Ex. 10.2, p. 367  

  Osteoporosis, Sec. 10.3, p. 368  

  Bone structure, Sec. 10.3, p. 370  

  Size limitations on organisms, Sec. 10.3, p. 370  

  List of Selected Applications 

  How walking speed depends on leg length, Ex. 10.10, p. 386  

  Sensitivity of the human ear, Sec. 11.1, p. 403  

  Seismic waves used by animals, Sec. 11.2, p. 406  

  Ultrasonography, Ex. 11.5, p. 415  

  Frequency ranges of animal hearing, Sec. 12.1, pp. 434–435  

  Sound waves from a songbird, Ex. 12.2, p. 438  

  The human ear, Sec. 12.6, pp. 446–448  

  Echolocation by bats and dolphins, Sec. 12.9, pp. 455–456  

  Ultrasound and ultrasonic imaging, Sec. 12.9, pp. 456–457  

  Temperature conversion, Sec. 13.2, 469; Ex. 13.1, p. 470  

  Regulation of body temperature, Ex. 13.1, p. 470; Sec. 13.7, p. 487  

  Breathing of divers, Ex. 13.6, pp. 480–481  

  Temperature dependence of biological processes, 

Sec. 13.7, pp. 485–487  

  Diffusion of O 2 , water, platelets, Sec. 13.8, pp. 488–489; 

Ex. 13.9, p. 489  

  Why ponds freeze from the top down, Sec. 14.5, p. 516  

  Using ice to protect buds from freezing, Sec. 14.5, pp. 511–512  

  Temperature regulation in the human body, Sec. 14.7, p. 520  

  Forced convection in the human body, Sec. 14.7, p. 520  

  Convection and radiation in global climate change, Sec. 14.7, 

pp. 520–521; Sec. 14.8, p. 521  

  Thermal radiation, Sec. 14.8, p. 521  

  Thermography, Sec. 14.8, p. 525  

  Heat loss and gain by plants and animals, Ex. 14.12, p. 522; 

Ex. 14.14, p. 525; PPs 14.13, p. 524, 14.14, p. 525  

  Changes in internal energy for biological processes, 

Ex. 15.1, p. 541  

  Entropy and evolution, Sec. 15.8, p. 559  

  Hydrogen bonding in water and in DNA, Sec. 16.1, pp. 575–576  

  Electrolocation in fish, Sec. 16.4, p. 592  

  Gel electrophoresis, Sec. 16.5, pp. 596–597  

  Transmission of nerve impulses, Sec. 17.2, p. 627  

  Electrocardiographs, electroencephalographs, and 

 electroretinographs, Sec. 17.2, p. 628  

  Potential differences across cell membranes, Sec. 17.2; 

Ex. 17.11, p. 640; PP 17.11, p. 640  

  Neuron capacitance, Ex. 17.11, p. 640  

  Defibrillator, Ex. 17.12, p. 643  

  Propagation of nerve impulses, Sec. 18.10, pp. 689–690  

  Effects of current on the human body, Sec. 18.11, p. 690  

  Defibrillator, Sec. 18.11, p. 690  

  Magnetotactic bacteria, Sec. 19.1, pp. 707, 711  

  Medical uses of cyclotrons, Sec. 19.3, p. 721  

  Mass spectrometry, Sec. 19.3, pp. 718–719  

  Electromagnetic blood flowmeter, Sec. 19.5, pp. 725–726  

  Magnetic resonance imaging, Sec. 19.8, pp. 737–738  

  Magnetoencephalography, Sec. 20.3, p. 770  

  Infrared detection by snakes, beetles, and bed bugs, 

Sec. 22.3, p. 827  

  Thermograms of the human body, Sec. 22.3, pp. 827, 828  

  Fluorescence, Sec. 22.3, p. 828  

  Biological effects of UV exposure, Sec. 22.3, p. 829  

  X-rays in medicine and dentistry, CAT scans, Sec. 22.3, p. 830  

  Navigation of bees, Sec. 22.7, p. 848  
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  Endoscope, Sec. 23.4, p. 875  

  Kingfisher looking for prey, Sec. 23.4, pp. 878–879  

  Human eye, Sec. 24.3, p. 910  

  Correcting myopia, Sec. 24.3, pp. 912–913  

  Correcting hyperopia, Sec. 24.3, pp. 913–914  

  Astigmatism of the eye, Sec. 24.3, pp. 914–915  

  Microscopy, Sec. 24.5, pp. 917–918  

  Interference microscopy, Sec. 25.2, p. 942  

  Iridescent colors in butterflies, birds, and other animals, Sec. 25.3, 

pp. 947–948  

  Resolution of the human eye, Sec. 25.8, p. 962  

  X-ray diffraction studies of nucleic acids and proteins, Sec. 25.9, 

pp. 963–964  

  Medical x-rays, Ex. 27.4, pp. 1016–1017  

  Bioluminescence, Sec. 27.7, p. 1028  

  Positron emission tomography, Sec. 27.8, p. 1030  

  Electron microscopes, Sec. 28.3, pp. 1045–1046  

  Lasers in medicine, Sec. 28.9; Ex. 28.5; p. 1061; PP 28.5, p. 1061  

  Radiocarbon dating, Sec. 29.4, p. 1091; Ex. 29.9, p. 1092; 

PP 29.9, p. 1092  

  Biological effects of radiation, Sec. 29.5, pp. 1094–1095, 

PP 29.11, p. 1095  

  Radioactive tracers, Sec. 29.5, pp. 1097–1098  

  Positron emission tomography, Sec. 29.5, p. 1096  

  Radiation therapy, Sec. 29.5, p. 1098  

   Problems:  (1) P: 5, 37, 42, 72, 73, 75; (2) P: 7, 27, 43, 75, 76, 

87; (3) P: 59, 62, 64, 103, 107, 113; (4) P: 6, 21, 27, 121, 127, 

149, 153, 157; (5) P: 8, 14, 15, 53, 54, 59, 60, 79, 81, 84; (6) 

P: 8, 33, 62, 69, 70, 86, 112-114, 117; (7) P: 33, 97; (8) P: 18, 

42-48, 53, 77-79, 82, 83, 90, 91, 94, 112, 113, 118, 124; CQ: 

10, 11, 15, 16; MCQ: 10; (9) P: 18, 19, 24-26, 40, 41, 48, 61, 

62 66, 67, 68, 84, 85, 97, 98; CQ: 7, 14; (10) P: 2, 3, 8-10, 

13-18, 39, 40, 73, 90, 91; CQ: 10; (11) P: 44; (12) P: 3-5, 

14-18, 26, 49, 55-58, 63, 67-72; CQ: 4, 5, 8; (13) P: 45, 73, 

74, 80, 81, 84, 106, 115, 116; (14) P: 17, 22, 23, 30, 31, 36, 

46, 47, 51, 63-67, 78, 83, 85, 91, 93, 103, 104; (15) P: 67-70, 

78, 96; (16) P: 20, 88, 89, 107, 56; (17) P: 88, 89, 91, 122, 

102-108; (18) P: 110, 27, 104-106, 91, 92, 117; CQ: 11-13; 

(19) P: 25-28, 30-34, 43, 81, 93 94, 96, 105; (20) P: 42, 61; 

CQ: 8; (21) P: 54, 56; (22) P: 68, 69; (23) P: 10, 11, 26, 27; 

CQ: 21; (24) P: 21-32, 41-52, 63, 74, 82, 85; CQ: 10-15; (25) 

P: 91, 57, 59, 72, 73, 97; CQ: 16; (26) P: 51-55; (27) P: 52, 55, 

62, 66-69, 94; R&S: 27, 29; CQ: 2; (28) P: 12-14, 75, 76; (29) 

P: 32, 33, 36, 37, 55, 45, 47-50, 64, 42, 49, 79; CQ: 9-12.    

  Chemistry 
   Collision between krypton atom and water molecule, 

Ex. 7.9, p. 250  

  Why reaction rates increase with temperature, Sec. 13.7, 

pp. 485–486  

  Polarization of charge in water, Sec. 16.1, p. 575  

  Hydrogen bonding in water and in DNA, Sec. 16.1, pp. 575–576  

  Current in neon signs and fluorescent lights, Sec. 18.1, p. 660  

  Spectroscopic analysis of elements, Sec. 27.6, pp. 1019–1021  

  Fluorescence, phosphorescence, and chemiluminescence, 

Sec. 27.7, pp. 1027–1028  

  Electronic configurations of arsenic, Ex.28.4, p. 1055  

  Understanding the periodic table, Sec. 28.4, pp. 1055–1057  

  Lasers in medicine, Sec. 28.9, p. 1061  

  Radiocarbon dating, Sec. 29.4, p. 1091  

  Dating archaeological sites, Ex. 29.9, p. 1092  

  Biological effect of radiation, Sec. 29.5, pp. 1094–1095  

  Radioactive tracers in medical diagnosis, Sec. 29.5, pp. 1097–1098  

  Gamma knife radio surgery, Sec. 29.5, p. 1099  

  Radiation therapy, Sec. 29.5, p. 1098  

   Problems:  (7) P: 44.; (13) CQ: 13-14; P: 29-41, 63-77, 83, 85, 90.; 

(14) P: 10.; (16) P: 111, 112.; (17) P: 3, 5, 50, 95; (18) P: 7; 

MC: 1; R&S: 10; (19) P: 30-34, 96; (26) P: 47, 91; (27) P: 5-6, 

11, 32, 34, 40-42, 48, 53, 66-67, 76, 81, 7; (28) P: 6, 11, 20, 

34, 42, 46, 60, 79; CQ: 12-18; MC: 4; (29) P: 3-17, 25, 33-45, 

52-64; (30) R&S: 11, 16-17, 26; MCAT: 1-2, 6-13.    

  Geology/Earth Science 
   Angular speed of Earth, Ex. 5.1, p. 159  

  Angular momentum of hurricanes and pulsars, Sec. 8.8, p. 302  

  Hidden depths of an iceberg, Ex. 9.7, p. 342  

  Why ocean waves approach shore nearly head on, Sec. 11.8, p. 419  

  Resonance and damage caused by earthquakes, Sec. 11.10, p. 425  

  Ocean currents and global warming, Sec. 14.7, p. 524  

  Global climate change, Sec. 14.8, p. 529  

  Second law and evolution, Sec. 15.8, pp. 562–563  

  Second law and the “energy crisis,” Sec. 15.8, p. 563  

  Electric potential energy in a thundercloud, Ex. 17.1, p. 624  

  Thunderclouds and lightning, Sec. 17.6, p. 644  

  Earth’s magnetic field, Sec. 19.1, pp. 710–711  

  Deflection of cosmic rays, Ex. 19.1, p. 715  

  Magnetic force on an ion in the air, Ex. 19.2, p. 716  

  Intensity of sunlight reaching the Earth, Ex. 22.6, p. 840  

  Colors of the sky during the day and at sunset, Sec. 22.7, pp. 847–848  

  Rainbows, Sec. 23.3, p. 870  

  Cosmic rays, Ex. 26.2, p. 989  

  Radioactive dating of geologic formations, Sec. 29.4, p. 1092  

  Neutron activation analysis, Sec. 29.6, p. 1099  

   Problems:  (1) P: 84, 88; (5) P: 71; (8) CQ: 21; (9) CQ: 8; P: 52, 

84, 94, 97; (11) CQ: 9; P: 76, 78-79, 82, 84; (12) P: 7-8, 52; 

(13) P: 60; (14) CQ: 4, 6; P: 96, 109; (15) MCAT: 2-3; (16) 

P: 68, 81, 85; (17) CQ: 19; P: 66, 70, 81, 90; (18) P: 134; (22) 

P: 52-53, 65; CQ: 6, 7, 11; (29) P: 71, CQ: 6.    

  Astronomy/Space Science 
    Mars Climate Orbiter  failure, Sec. 1.5, p. 9  

  Why  Voyager  probes keep moving, Sec. 2.4, p. 38  

Discovering planets in other solar systems Ex. 4.5, p. 104

  Orbiting satellite, Sec. 5.2, pp. 162, 168  

  Circular orbits, Sec. 5.4, p. 168  

  Kepler’s laws of planetary motion, Sec. 5.4, pp. 169–170  

  Speed of Hubble Telescope orbiting Earth, Ex. 5.8, p. 169  

  Geostationary orbits, Sec. 5.4, p. 170  

  Orbit of geostationary satellite, Ex. 5.9, p. 171  

  Orbiting satellites, Ex. 5.10, p. 172  

  Apparent weightlessness of orbiting astronauts, Sec. 5.7, p. 178  

  Artificial gravity and the human body, Sec. 5.7, p. 179  

  Elliptical orbits, Sec. 6.2, p. 196  

  Orbital speed of Mercury, Ex. 6.7, p. 208  

  Escape speed from Earth, Ex. 6.8, p. 209  

  Center of mass of binary star system, Ex. 7.7, p. 246  

  Motion of an exploding model rocket, Ex. 7.8, pp. 248–249  

  Orbital speed of Earth, Ex. 8.15, p. 301  

  Composition of planetary atmospheres, Sec. 13.6, p. 485  

  Temperature of the Sun, Ex. 14.13, p. 524  

  Aurorae on Earth, Jupiter, and Saturn, Sec. 19.4, p. 722  

  Cosmic microwave background radiation, Sec. 22.3, p. 829  
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  Light from a supernova, Ex. 22.2, p. 833  

  Doppler radar and the expanding universe, Sec. 22.8, p. 850  

  Telescopes, Sec. 24.5, pp. 920–921  

  Hubble Space Telescope, Sec. 24.6, p. 923  

  Radio telescopes, Sec. 24.6, pp. 923–924  

  Observing active galactic nuclei, Sec. 26.2, pp. 981–982  

  Aging of astronauts during space voyages, Ex. 26.1, pp. 986–987  

  Nuclear fusion in stars, Sec. 29.8, pp. 1105–1106  

   Problems:  (1) P: 93; (2) P: 62; (3) MC: 5; P: 106; (5) R&S: 11, 

16; (6) P: 20, 42-51, 90; (8) CQ: 17; P: 72, 89, 92; R&S: 29; 

(9) CQ: 5; (10) P: 26; (11) P: 1, 6; (13) P: 74; (14) MC: 1-3; 

(15) R&S: 3, 9; (16) P: 85; (19) P: 18; (21) R&S: 5; (22) P: 16, 

34-35, 41, 55; (24) P: 86: CQ: 5, 17; MC: 6; P: 54-57, 59-61, 

74, 83; (25) CQ: 3-4; P: 54, 56, 71; R&S: 16, 22; MCAT: 3-6; 

(26) P: 3, 5, 8-9, 13-19, 22, 36 , 44-45, 64-65, 67, 69-70, 73, 

76-77, 82, 86; CQ: 8, 12; MC: 2,4; (27) P: 62. (30) P: 22; CQ: 4.    

  Architecture 
   Cantilever building construction, Sec. 8.4, p. 283  

  Strength of building materials, Sec. 10.3, p. 368  

  Vibration of bridges and buildings, Sec. 10.10, p. 388  

  Expansion joints in bridges and buildings, Sec. 13.3, p. 471  

  Heat transfer through window glass, Ex. 14.10, p. 518  

  Building heating systems, Sec. 14.7, p. 520  

   Problems:  (9) CQ: 4; (10) P: 1, 22, 83; CQ: 5, 12; (13) P: 12, 15, 

95; (14) P: 10, 62, 84; CQ: 25; (15) CQ: 12; R&S: 10.    

  Technology/Machines 
   Catapults and projectile motion, Sec 3.5, p. 69  

  Two-pulley system, Ex. 4.12, p. 119  

  Products to protect the human body from injury, Ex. 7.2, p. 237  

  Safety features in a modern car, Sec. 7.3, p. 238  

  Recoil of a rifle, Sec. 7.4, p. 243  

  Atwood’s machine, Ex. 8.2, pp. 273–274  

  Angular momentum of a gyroscope, Sec. 8.9, p. 302  

  Hydraulic lifts, brakes, and controls, Sec. 9.3, p. 326  

  Hydraulic lift, Ex. 9.2, p. 327  

  Mercury manometer, Ex. 9.5, pp. 331–332  

  Hot air balloons, Sec. 9.6, pp. 337–338  

  Venturi meter, Ex. 9.11, pp. 343–344  

  Sedimentation velocity and the centrifuge, Sec. 9.10, pp. 349–350  

  Operation of sonar and radar, Sec. 12.10, p. 456  

  Bimetallic strip in a thermostat, Sec. 13.3, pp. 472–473  

  Volume expansion in thermometers, Sec. 13.3, p. 473  

  Air temperature in car tires, Ex. 13.5, p. 479  

  Heat engines, Sec. 15.5, p. 550  

  Internal combustion engine, Sec. 15.5, pp. 550–551  

  Refrigerators and heat pumps, Sec. 15.6, p. 553  

  Efficiency of an automobile engine, Ex. 15.7, p. 556  

  Photocopiers and laser printers, Sec. 16.2, p. 580  

  Cathode ray tube, Ex. 16.9, p. 594  

  Oscilloscope, Sec. 16.5, p. 595  

  Electrostatic shielding, Sec. 16.6, p. 599  

  Lightning rods, Sec. 16.6, p. 600  

  Electrostatic precipitator, Sec. 16.6, pp. 600–601  

  Battery-powered lantern, Ex. 17.3, p. 623  

  van de Graaf generator, Sec. 17.2, p. 626  

  Transmission of nerve impulses, Sec. 17.2, p. 627  

  Computer keyboard, Ex. 17.9, p. 635  

  Condenser microphone, Sec. 17.5, pp. 635–636  

  Camera flash attachments, Sec. 17.5, p. 636  

  Oscilloscope, Sec. 17.5, p. 636  

  Random-access memory (RAM) chips, Sec. 17.5, p. 636  

  Resistance thermometer, Sec. 18.4, p. 669  

  Resistive heating, Ex 18.4, p. 670  

  Battery connection in a flashlight, Sec. 18.6, p. 671  

  Starting a car using flashlight batteries, Ex. 18.5, pp. 671–672  

  Electric fence, Sec. 18.11, p. 690  

  Household wiring, Sec. 18.11, p. 691  

  Bubble chamber, Sec. 19.3, p. 718  

  Mass spectrometer, Sec. 19.3, pp. 718–719  

  Cyclotrons, Ex. 19.5, pp. 720–721  

  Velocity selector, Sec. 19.5, pp. 723–724  

  Hall effect, Sec. 19.5, p. 726  

  Electric motor, Sec. 19.7, pp. 731–732  

  Galvanometer, Sec. 19.7, p. 732  

  Audio speakers, Sec. 19.7, pp. 732–733  

  Electromagnets, Sec. 19.10, p. 741  

  Magnetic storage, Sec. 19.10, p. 742  

  Electric generators, Sec. 20.2, p. 763  

  DC generator, Sec. 20.2, p. 763  

  Back emf in a motor, Sec. 20.5, pp. 767–768  

  Ground fault interrupter, Sec. 20.3, p. 769  

  Moving coil microphone, Sec. 20.3, p. 769  

  Transformers, Sec. 20.6, p. 773  

  Distribution of electricity, Sec. 20.6, p. 775  

  Eddy-current braking, Sec. 20.7, p. 775  

  Induction stove, Sec. 20.7, p. 776  

  Radio’s tuning circuit, Ex. 21.3, p. 804  

  Laptop power supply, Ex. 21.5, p. 807  

  Tuning circuits, Sec. 21.6, p. 809  

  Rectifiers, Sec. 21.7, p. 810  

  Crossover networks, Sec. 21.7, p. 811  

  Electric dipole antenna, Ex. 22.1, pp. 823–824  

  Microwave ovens, Sec. 22.3, p. 829  

  Liquid crystal displays, Sec. 22.7, p. 845  

  Periscope, Sec. 23.4, p. 873  

  Fiber optics, Sec. 23.4, p. 874  

  Zoom lens, Ex. 23.9, p. 891  

  Cameras, Sec. 24.2, pp. 907–908  

  Microscopes, Sec. 24.5, pp. 917–918  

  Lens aberrations, Sec. 24.7, p. 924  

  Reading a compact disk (CD), Sec. 25.1, pp. 940, 941  

  Michelson interferometer, Sec. 25.2, p. 940  

  Interference microscope, Sec. 25.2, p. 942  

  Antireflective coating, Sec. 25.3, pp. 946–947  

  CD tracking, Sec. 25.5, pp. 953–954  

  Diffraction and photolithography, Ex. 25.7, p. 956  

  Spectroscopy, Sec. 25.5, p. 954  

  Resolution of a laser printer, Ex. 25.9, p. 961  

  X-ray diffraction, Sec. 25.9, pp. 963–964  

  Holography, Sec. 25.10, pp. 964–965  

  Photocells for sound tracks, burglar alarms, garage door openers, 

Sec. 27.3, pp. 1015–1016  

  Diagnostic x-rays in medicine, Ex. 27.4, pp. 1016–1017  

  Quantum corral, Sec. 28.5, pp. 1050–1051  

  Lasers, Sec. 28.9, pp. 1058–1061  

  Scanning tunneling microscope, Sec. 28.10, p. 1064  

  Atomic clock, Sec. 28.10, p. 1064  

  Nuclear fission reactors, Sec. 29.7, p. 1110  

  Fusion reactors, Sec. 29.8, pp. 1107–1108  

  High-energy particle accelerators, Sec. 30.4, p. 1124  

   Problems:  (5) P: 55, 70, 75-76, 85, 87, 89; R&S: 33, (6) P: 6, 

25. (8) P: 7, 12-13, 17, 28, 31, 50, 52, 54, 59, 73, 76, 81, 93, 
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97; R&S: 27. (10) P.74; CQ: 7; P: 33, 37, 43, 75, 90. (12) 

P: 17. (16) CQ: 6; P: 78, 90. (18) P: 4-5, 12, 105; R&S: 8, 

12, 18. (19) CQ: 5, 13, 16; P: 16, 55-57, 89, 103, 104, 110. 

(20) P: 101; CQ: 1, 6, 7, 16; MC: 1-2, 7, 10; P: 9-21, 29-38, 

4-44, 54. (21) CQ: 1-18; MC: 1-10; P: 1-10, 25, 39, 50, 57-66, 

68-94. (22) CQ: 1-2, 9; MC: 4, 7, 9; P: 1-23, 25-31, 57, 60-62, 

65, 67-68, 75-76. (23) CQ: 19; MC: 2; (24) CQ: 1, 4-7, 12, 

14-16; MC: 1-2, 6, 7, 10; P: 9-21, 36-54, 56-59, 61, 63, 65-68, 

71, 77. (25) CQ: 7; MC: 4; P: 1, 11-13, 43. (26) P: 24, 66. (27) 

CQ: 18; P: 16-21, 64, 74, 75. (28) P: 19; CQ: 6, 13-14; (29) 

P: 7; CQ: 13; (30) P: 12, 14-15, 19.    

  Transportation 
   Braking a car, Ex. 2.4, pp. 35–36  

  Acceleration of a sports car, Ex. 2.5, p. 37  

  Relative velocities for pilots and sailors, Sec. 3.5, p. 77  

  Airplane flight in a wind, Ex. 3.9, p. 77  

  Angular speed of a motorcycle wheel, Ex. 5.3, p. 160  

  Banked roadways, Sec. 5.3, pp. 165–166  

  Banked and unbanked curves, Ex. 5.7, pp. 166–167  

  Banking angle of an airplane, Sec. 5.3, p. 168  

  Circular motion of stunt pilot, Ex. 5.14, pp. 179–180  

  Damage in a high-speed collision, Ex. 6.3, p. 201  

  Power of a car climbing a hill, Ex. 6.14, p. 218  

  Momentum of a moving car, Ex. 7.1, p. 236  

  Force acting on a car passenger in a crash, Ex. 7.3, p. 239  

  Jet, rocket, and airplane wings, Sec. 7.4, p. 243  

  Collision at a highway entry ramp, Ex. 7.10, p. 252  

  Torque on a spinning bicycle wheel, Ex. 8.3, pp. 276–277  

  How a ship can float, Sec. 9.6, pp. 335–336  

  Airplane wings and lift, Sec. 9.8, p. 345  

  Shock absorbers in a car, Sec. 10.9, pp. 387–388  

  Shock wave of a supersonic plane, Sec. 12.8, pp. 454–455  

  Regenerative braking, Sec. 20.2, p. 763  

  Bicycle generator, Ex. 20.2, p. 764  

   Problems:  (3) P: 12, 19-24, 30-33, 46-49, 52, 64, 66, 68, 73-76, 

78-82, 84-86, 97, 111, 113, 115; (4) P: 4-6, 8-10, 14, 18-19, 

69, 75, 83-85; (5) P: 9, 19-21, 24-28, 41, 43, 51, 81; R&S: 

6-7, 26-27; (6) P: 4-5, 10, 18, 22, 32, 70-71, 80, 91; (7) P: 71, 

86; (8) P. 129; CQ: 6; P: 93; MCAT: 5; (9) P: 9-11, 28, 48, 96; 

CQ: 11, 16; (10) P: 24, 39-40, 45; CQ: 16; (11) P: 70, 74; (12) 

P: 14; (13) P: 8-9, 24, 41-42, 91, 101; (14) CQ: 9, 10; (15) 

P: 18; R&S: 21; (18) P: 8, 10-11; (20) MC: 5, 10.    

  Sports 
   Velocity and acceleration of an inline skater, Ex. 3.5, p. 68  

  Rowing and current, PP 3.9, p. 78  

  Hammer throw, Ex. 5.5, p. 163  

  Bungee jumping, Ex. 6.4, p. 201  

  Rock climbers rappelling, Ex. 6.5, p. 205  

  Speed of a downhill skier, Ex. 6.6, p. 206  

  Work done in drawing a bow, Sec. 6.6, p. 210  

  Dart gun, Ex. 6.11 p. 214  

  Elastic collision in a game of pool, Ex. 7.12, p. 255  

  Choking up on a baseball bat, Sec. 8.1, p. 271  

  Muscle forces for the iron cross (gymnastics), Sec. 8.5, pp. 290–291  

  Rotational inertia of a figure skater, Sec. 8.8, pp. 298–299  

  Pressure on a diver, Ex. 9.3, p. 329  

  Compressed air tanks for a scuba driver, Ex. 13.6, p. 480  

   Problems:  (1) P: 34; (2) P: 121; (3) 5-6, 11, 16, 34, 85, 95; (5) P: 2, 

5, 23, 67; R&S: 5, 8, 35, 38; (6) P: 12, 16, 31, 36, 47, 61, 62, 68, 

69, 75, 77-79, 86, 90, 94, 99; (7) P: 12, 16, 17, 24, 74, 75, 79, 

81; CQ: 15, 17; (8) P: 3, 8, 32-34, 53, 74, 75, 78, 79, 87, 109; 

CQ: 7, 15, 19; MC: 9; R&S: 1, 7, 12, 18, 26; (9) P: 75, 89; CQ: 

18; (10) P: 90; CQ: 9, 10; (11) P: 18; (12) P: 3; (14) P: 4, 6, 7.    

  Everyday Life 
   Buying clothes, unit conversions, Ex. 1.6, p. 10  

  Snow shoveling, Ex. 4.3, p. 99  

  Hauling a crate up to a third-floor window, Ex. 4.10, p. 114  

  Circular motion of a DVD, Sec. 5.1, p. 155  

  Speed of a roller coaster car in a vertical loop, Ex. 5.11, p. 174  

  Circular motion of a potter’s wheel, Ex. 5.13, p. 177  

  Antique chest delivery, Ex. 6.1, pp. 196–197  

  Pulling a sled through snow, Ex. 6.2, pp. 198–199  

  Getting down to nuts and bolts, Ex. 6.10, p. 212  

  Motion of a raft on a still lake, Pp. 7.8, p. 249  

  Automatic screen door closer, Ex. 8.4, p. 278  

  Work done on a potter’s wheel, Ex. 8.5, p. 280  

  Climbing a ladder on a slippery floor, Ex. 8.7, pp. 283–284  

  Pushing a file cabinet so it doesn’t tip, Ex. 8.9, pp. 287–288  

  Torque on a grinding wheel, Ex. 8.11, p. 294  

  Pressure exerted by high-heeled shoes, Ex. 9.1, p. 325  

  Cutting action of a pair of scissors, Ex. 10.4, p. 372  

  Difference between musical sound and noise, Sec. 11.4, p. 408  

  Sound from a guitar, Sec. 12.1, p. 433  

  Sound from a loudspeaker, Sec. 12.1, p. 433  

  Sound level of two lathes, Ex. 12.4, pp. 440–441  

  Wind instruments, Sec. 12.4, p. 443  

  Tuning a piano, Sec. 12.7, p. 450  

  Chill caused by perspiration, Sec. 14.5, p. 514  

  Double-paned windows, Ex. 14.10, p. 518  

  Offshore and onshore breezes, Sec. 14.7, pp. 519–520  

  Incandescent lightbulb, Sec. 14.8, p. 523  

  Static charge from walking across a carpet, Ex. 16.1, p. 573  

  Grounding of fuel trucks, Sec. 16.2, p. 578  

  Resistance of an extension cord, Ex. 18.3, pp. 668–669  

  Resistance heating, Sec. 21.1, p. 797  

  Polarized sunglasses, Sec. 22.7, p. 845  

  Colors from reflection and absorption of light, Sec. 23.1, p. 861  

  Mirages, Sec. 23.3, p. 869  

  Cosmetic mirrors and automobile headlights, Sec. 23.8, pp. 883–884  

  Side-view mirrors on cars, Ex. 23.7, p. 886  

  Colors in soap films, oil slicks, Sec. 25.3, pp. 944–945  

  Neon signs and fluorescent lights, Sec. 27.6, p. 1020  

  Fluorescent dyes in laundry detergent, Sec. 27.6, p. 1028  

   Problems:  (1) P: 27; (2) P: 113; (5) P: 12, 65-66, 75; R&S: 3, 9, 10, 

13, 15, 20, 22; (6) P: 7-9, 21, 26, 66, 67, 104, 107; (7) P: 1, 15, 

31, 47, 78, 85; CQ: 1, 13; (8) P: 11, 13-16, 18-19, 21, 26, 30, 32, 

35, 37, 50, 54, 55, 68, 80, 92, 106, 110; CQ: 3, 12-14, 18; MC: 

1; R&S: 16; (9) P: 3, 5, 16, 21, 37, 41, 43-44, 49, 52, 56-58; CQ: 

2, 13; MC: 2; (10) P: 1, 26, 37, 46, 73, 80; CQ: 2, 3; (11) P: 2-4, 

9-10, 15, 17, 36, 44, 46, 48, 50-59, 63-65, 67, 73, 77; CQ: 1-6; 

MC: 3-5; (12) P: 18, 20-28, 36-37, 40-45, 53, 55, 62-63, 69; MC: 

1-3, 9-10; R&S: 1-3, 6, 9, 15-17. (13) P: 4, 6, 45-46, 78, 94, 107, 

108; CQ: 6, 8, 19, 20; (14) P: 17, 86; CQ: 5, 11, 12, 17, 19, 22; 

MC: 5; P: 13, 24, 27-36, 43, 47, 56, 61-62, 65, 67, 69, 73, 81, 88, 

100. (15) P: 24, 29-31, 36, 39, 43-44, 56, 70, 77; CQ: 1-2, 5-8, 

11, 13; MC: 6; R&S: 11, 17-19, 24; (16) CQ: 2, 12; (17) P: 67; 

CQ: 3, 16; (18) P: 1, 29, 59, 59-62, 67, 70, 84, 87, 97–98, 110, 

113–114, 117; CQ: 1, 3, 9, 13, 18; R&S: 6, 21; MCAT: 2-13; 

(19) CQ: 9. (20) P: 33; 72; CQ: 14, 17; (21) P: 1-2, 6, 68, 70, 80; 

(22) P: 10-11, 13, 24, 58-59; (23) P: 21-22, 31-32, 39, 48, 72, 79, 

83, 88; CQ: 5, 14; (25) P: 7, 14-17; (27) P: 64; CQ: 2.     
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xviii

  Preface 
Physics  is intended for a two-semester college course in introductory physics using 

algebra and trigonometry. Our main goals in writing this book are

   • to present the basic concepts of physics that students need to know for later courses 

and future careers,  

  • to emphasize that physics is a tool for understanding the real world, and  

  • to teach transferable problem-solving skills that students can use throughout their 

lives.    

 We have kept these goals in mind while developing the main themes of the book. 

  NEW TO THE THIRD EDITION 
  Although the fundamental philosophy of the book has not changed, detailed feedback 

from instructors and students using the previous editions has enabled us to continu-

ally fine-tune our approach. Some of the most important enhancements in the third 

edition include:

   • Based on a review of the content lists for physics in the  Preview Guide for the
MCAT2015 Exam,  coverage of the following topics has been added or expanded: 

mechanical advantage, turbulence, surface tension, attenuation of sound waves, 

paramagnetism and diamagnetism, circular polarization, and lens aberrations.  

  • MCAT review questions have been moved online so actual questions from the 

2015 MCAT exams can be made available to students.  

  • Starting with Chapter 4, Review & Synthesis problems appear at the end of every 

chapter instead of after related groups of chapters.  

  • To help students see that the physics they are learning is relevant to their careers, 

the third edition includes 116 new  biomedical applications  in the end-of-chapter 

Problems, 12 new biomedical Examples, and 10 new text discussions of  biomedical 

applications.  

  • A  list of selected biomedical applications  appears on the first page of each 

chapter.  

  • Ninety-five new  Ranking Tasks  have been included in the Checkpoints, Practice 

Problems, and end-of-chapter Problems.  

  • New  Checkpoints  have been added to the text to give students more frequent 

opportunities to pause and test their understanding of a new concept.  

  • Every chapter includes a set of  Collaborative Problems  that can be used in 

 cooperative group problem solving.  

  • The  Connections  have been enhanced and expanded to help students see the  bigger 

picture—that what may seem like a new concept may really be an extension, 

 application, or specialized form of a concept previously introduced. The goal is for 

students to view physics as a small set of fundamental concepts that can be applied 

in many different situations, rather than as a collection of loosely related facts or 

equations.  

  • Many of the legends have been expanded to help students learn more from the 

illustrations.  

  • Most marginal notes from the previous edition have been incorporated into the text 

for better flow of ideas and a less cluttered presentation.  

  • Multiple-Choice Questions that are well-suited to use with  student response 
 systems  are identified with a “clicker” icon. Answers to even-numbered questions 

are not given, for instructors who track student performance using “clickers.”    

 Some chapter-specific revisions to the text include:
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 PREFACE xix

   • In  Chapter 1,  the general guidelines for problem solving have been expanded.  

  •  Chapter 2  introduces motion diagrams earlier and uses them extensively. Students 

are asked to construct or to interpret motion diagrams in Checkpoints, Examples, 

Practice Problems, and end-of-chapter Problems.  

  •  Chapters 3 continues  the increased emphasis on motion diagrams. Motion with 

constant acceleration is now introduced first with motion diagrams, before other 

representations (graphs and equations).  

  • In  Chapter 4  the introduction of forces as interaction partners in Section 4.1 now 

includes an explicit reference to Newton’s third law. More prominence is given to 

the specific identification of forces; the student is asked to state  on  what object and 

 by  what other object a force is exerted. A Connection has been added to reinforce 

a central theme in Newton’s laws: no matter what  kinds  of forces are acting on an 

object, we always add them the same way (as vectors) to find the net force.  

  •  Chapter 6  is enhanced with a new problem-solving strategy box on how to choose 

between alternative problem-solving approaches (energy vs. Newton’s second 

law). The explanation of why the change in gravitational potential energy is the 

 negative  of the work done by gravity is simpler and more intuitive. Chapter 6 also 

uses energy graphs more frequently.  

  •  Chapter 7  now includes a text discussion of ballistocardiography.  

  •  Chapter 11  discusses the use of seismic waves by animals to communicate and to 

sense their environment. The presentation of interference and phase difference has 

been simplified.  

  •  Chapter 12  contains an expanded discussion of audible frequency ranges for 

various animals. The presentation of the (nonrelativistic) Doppler effect is more 

straightforward, with emphasis on the relative velocities of the wave with respect 

to source and observer. A new problem-solving strategy box for the Doppler effect 

has been added.  

  •  Sections 15.5–15.7  contain improved explanations of heat engines and heat pumps.  

  •  Chapters 16 and 17  include a description of hydrogen bonds in water, DNA, and 

proteins. A simplified model of the hydrogen bond as interactions between point 

charges enables the student to make realistic estimates of the forces involved and of 

the binding energy of a hydrogen bond. A discussion of gel electrophoresis has also 

been added to Chapter 16.  

  •  Chapter 18  includes an enhanced discussion of the resistivity of water and how it 

depends strongly on the concentrations of ions. An explanation of the microscopic 

origin of Ohm’s law has been added to  Section 18.4.   

  • In  Chapter 19,  the visual depiction of the right-hand rule is clearer, and an alter-

native “wrench rule” is introduced. The explanation of how a cyclotron works is 

clearer.  Section 19.10  has been rewritten to provide a more complete description of 

paramagnetism and diagmagnetism.  

  •  Chapter 20’s  treatment of inductance has been streamlined, with the quantitative 

material on  mutual  inductance moved to the text website.  

  •  Chapter 22  explains more plainly Maxwell’s achievement in unifying the laws of 

electricity and magnetism, showing that EM waves exist and that electric and mag-

netic fields are real, not just convenient mathematical tools. The chapter includes 

discussions of IR detection by animals and the biological effects of UV exposure, 

as well as an improved explanation of how polarizers work.  Section 22.7  now 

includes a description of circular polarization.  

  •  Section 24.3  describes astigmatism of the eye.  Section 24.7  contains a more com-

plete explantion of lens aberrations.  

  •  Chapter 25  simplifies the discussion of phase differences for constructive and 

destructive interference.  

  •  Chapter 29  mentions other modes of radioactive decay such as proton emis-

sion and double beta emission. The text discusses the accidents at the Fukushima 

Daiichi nuclear power plant due to the 2011 Tō hoku tsunami.  

  •  Chapter 30  now includes brief descriptions of inflation and of the Higgs field.      
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xx  PREFACE

  COMPREHENSIVE COVERAGE 
  Students should be able to get the whole story from the book. The previous editions have 

been tested in our nontraditional course, where students must rely on the textbook as their 

primary learning resource because there are no lectures. Nonetheless, completeness and 

clarity are equally advantageous when the book is used in a more traditional classroom 

setting.  Physics  frees the instructor from having to try to “cover” everything. The instruc-

tor can then tailor class time to more important student needs—reinforcing difficult con-

cepts, working through Example problems, engaging the students in peer instruction and 

cooperative learning activities, describing applications, or presenting demonstrations.   

  A CONCEPTS-FIRST APPROACH 
  Some students approach introductory physics with the idea that physics is just the memo-

rization of a long list of equations and the ability to plug numbers into those equations. 

We want to help students see that a relatively small number of basic physics concepts are 

applied to a wide variety of situations. Physics education research has shown that students 

do not automatically acquire conceptual understanding; the concepts must be explained 

and the students given a chance to grapple with them. Our presentation, based on years of 

teaching this course, blends conceptual understanding with analytical skills. The “concepts-

first” approach helps students develop intuition about how physics works; the “formulas” 

and problem-solving techniques serve as  tools for applying the concepts.  The  Conceptual 
Examples  and  Conceptual Practice Problems  in the text and a variety of ranking tasks 

and Conceptual and Multiple-Choice Questions at the end of each chapter give students a 

chance to check and to enhance their conceptual understanding.   

  INTRODUCING CONCEPTS INTUITIVELY 
  We introduce key concepts and quantities in an informal way by establishing why the 

quantity is needed, why it is useful, and why it needs a precise definition. Then we 

make a transition from the informal, intuitive idea to a formal definition and name. 

Concepts motivated in this way are easier for students to grasp and remember than are 

concepts introduced by seemingly arbitrary, formal definitions. 

 For example, in Chapter 8, the idea of rotational inertia emerges in a natural way 

from the concept of rotational kinetic energy. Students can understand that a rotating rigid 

body has kinetic energy due to the motion of its particles. We discuss why it is useful to be 

able to write this kinetic energy in terms of a single quantity common to all the particles 

(the angular speed), rather than as a sum involving particles with many different speeds. 

When students understand why rotational inertia is defined the way it is, they are better 

prepared to move on to the more difficult concepts of torque and angular momentum. 

 We avoid presenting definitions or formulas without any motivation. When an 

equation is not derived in the text, we at least describe where the equation comes from 

or give a plausibility argument. For example, Section 9.9 introduces Poiseuille’s law 

with two identical pipes in series to show why the volume flow rate must be propor-

tional to the pressure drop per unit length. Then we discuss why Δ V /Δ t  is proportional 

to the fourth power of the radius (rather than to  r  2 , as it would be for an ideal fluid). 

 Similarly, we have found that the definitions of the displacement and velocity vec-

tors seem arbitrary and counterintuitive to students if introduced without any motiva-

tion. Therefore, we precede any discussion of kinematic quantities with an introduction 

to Newton’s laws, so students know that forces determine how the state of motion of an 

object changes. Then, when we define the kinematic quantities to give a precise defini-

tion of acceleration, we can apply Newton’s second law quantitatively to see how forces 

affect the motion. We give particular attention to laying the conceptual groundwork for 

a concept when its name is a common English word such as  velocity  or  work.    
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  WRITTEN IN A CLEAR AND FRIENDLY STYLE 
  We have kept the writing down-to-earth and conversational in tone—the kind of lan-

guage an experienced teacher uses when sitting at a table working one-on-one with a 

student. We hope students will find the book pleasant to read, informative, and accurate 

without seeming threatening, and filled with analogies that make abstract concepts easier 

to grasp. We want students to feel confident that they can learn by studying the textbook. 

 Although we agree that learning correct physics terminology is essential, we chose 

to avoid all  unnecessary  jargon—terminology that just gets in the way of the student’s 

understanding. For example, we never use the term  centripetal force,  since its use some-

times leads students to add a spurious “centripetal force” to their free-body diagrams. 

Likewise, we use  radial component of acceleration  because it is less likely to introduce 

or reinforce misconceptions than  centripetal acceleration.    

  ACCURACY ASSURANCE 
  The authors and the publisher acknowledge that inaccuracies can be a source of frustra-

tion for both the instructor and students. Therefore, throughout the writing and produc-

tion of this edition, we have worked diligently to eliminate errors and inaccuracies. 

Maureen Ross and her team at diacriTech conducted an independent accuracy check 

of all new and revised material in the final draft of the manuscript. They then coordi-

nated the resolution of discrepancies between the accuracy check and the end-of-book 

answers. The page proofs of the text were proofread against the manuscript to ensure 

the correction of any errors introduced when the manuscript was typeset. The end-of-

book answers were then re-checked by Ralph McGrew.   

  PROVIDING STUDENTS WITH THE TOOLS THEY NEED 
   Problem-Solving Approach 

 Problem-solving skills are central to an introductory physics course. We illustrate these 

skills in the Example problems. Lists of problem-solving strategies are sometimes use-

ful; we provide such strategies when appropriate. However, the most elusive skills—

perhaps the most important ones—are subtle points that defy being put into a neat list. 

To develop real problem-solving expertise, students must learn how to think critically 

and analytically. Problem solving is a multidimensional, complex process; an algorith-

mic approach is not adequate to instill real problem-solving skills. 

  Strategy   We begin each Example with a discussion—in language that the students can 

understand—of the  strategy  to be used in solving the problem. The strategy illustrates the 

kind of analytical thinking students must do when attacking a problem: How do I decide 

what approach to use? What laws of physics apply to the problem and which of them are 

 useful  in this solution? What clues are given in the statement of the question? What informa-

tion is implied rather than stated outright? If there are several valid approaches, how do I 

determine which is the most efficient? What assumptions can I make? What kind of sketch 

or graph might help me solve the problem? Is a simplification or approximation called for? 

If so, how can I tell if the simplification is valid? Can I make a preliminary estimate of the 

answer? Only after considering these questions can the student effectively solve the problem.  

  Solution   Next comes the detailed  solution  to the problem. Explanations are inter-

mingled with equations and step-by-step calculations to help the student understand 

the approach used to solve the problem. We want the student to be able to follow the 

mathematics without wondering, “Where did that come from?”  

  Discussion   The numerical or algebraic answer is not the end of the problem; our 

Examples end with a  discussion.  Students must learn how to determine whether their 
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xxii  PREFACE

answer is consistent and reasonable by checking the order of magnitude of the answer, 

comparing the answer with a preliminary estimate, verifying the units, and doing an 

independent calculation when more than one approach is feasible. When several differ-

ent approaches are possible, the discussion looks at the advantages and disadvantages of 

each approach. We also discuss the implications of the answer—what can we learn from 

it? We look at special cases and look at “what if” scenarios. The discussion sometimes 

generalizes the problem-solving techniques used in the solution.  

  Practice Problem   After each Example, a Practice Problem gives students a chance 

to gain experience using the same physics principles and problem-solving tools. By 

comparing their answers with those provided at the end of each chapter, students can 

gauge their understanding and decide whether to move on to the next section. 

 Our many years of experience in teaching the college physics course in a one-on-

one setting has enabled us to anticipate where we can expect students to have difficulty. 

In addition to the consistent problem-solving approach, we offer several other means 

of assistance to the student throughout the text. A boxed problem-solving strategy 

gives detailed information on solving a particular type of problem, and an icon    for 

 problem-solving tips draws attention to techniques that can be used in a variety of con-

texts. A hint in a worked Example or end-of-chapter problem provides a clue on what 

approach to use or what simplification to make. A warning icon    emphasizes an expla-

nation that clarifies a possible point of confusion or a common student misconception. 

 An important problem-solving skill that many students lack is the ability to extract 

information from a graph or to sketch a graph without plotting individual data points. 

Graphs often help students visualize physical relationships more clearly than they can 

with algebra alone. We emphasize the use of graphs and sketches in the text, in worked 

examples, and in the problems.   

  Using Approximation, Estimation, and Proportional Reasoning 

  Physics  is forthright about the constant use of simplified models and approximations 

in solving physics problems. One of the most difficult aspects of problem solving that 

students need to learn is that some kind of simplified model or approximation is usually 

required. We discuss how to know when it is reasonable to ignore friction, treat  g  as 

constant, ignore viscosity, treat a charged object as a point charge, or ignore diffraction. 

 Some Examples and Problems require the student to make an estimate—a useful 

skill both in physics problem solving and in many other fields. Similarly, we teach pro-

portional reasoning as not only an elegant shortcut but also as a means to understanding 

patterns. We frequently use percentages and ratios to give students practice in using and 

understanding them.  

  Showcasing an Innovative Art Program 

 In every chapter we have developed a system of illustrations, ranging from simpler dia-

grams to elaborate and beautiful illustrations, that brings to life the connections between 

physics concepts and the complex ways in which they are applied. We believe these 

illustrations, with subjects ranging from three-dimensional views of electric field lines 

to the biomechanics of the human body and from representations of waves to the distri-

bution of electricity in the home, will help students see the power and beauty of physics.  

  Helping Students See the Relevance of Physics in Their Lives 

 Students in an introductory college physics course have a wide range of backgrounds 

and interests. We stimulate interest in physics by relating its principles to applications 

relevant to students’ lives and in line with their interests. The text, Examples, and 

end-of-chapter problems draw from the everyday world; from familiar technological 

applications; and from other fields such as biology, medicine, archaeology, astronomy, 
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sports, environmental science, and geophysics. (Applications in the text are identified 

with a text heading or marginal note. An icon (   ) identifies applications in the biologi-

cal or medical sciences.) 

 The  Everyday Physics Demos  give students an opportunity to explore and see 

physics principles operate in their everyday lives. These activities are chosen for their 

simplicity and for their effectiveness in demonstrating physics principles. 

 Each  Chapter Opener  includes a photo and vignette, designed to capture student 

interest and maintain it throughout the chapter. The vignette describes the situation 

shown in the photo and asks the student to consider the relevant physics. A reduced 

version of the chapter opener photo and question indicate where the vignette topic is 

addressed within the chapter.  

  Focusing on the Concepts 

 By identifying areas where important concepts are revisited, the  Connections  allow 

us to focus on the basic, core concepts of physics and reinforce for students that all 

of physics is based on a few, fundamental ideas. A marginal Connections heading and 

summary adjacent to the coverage in the main text help students easily recognize that a 

previously introduced concept is being applied to the current discussion. 

 The exercises in the  Review & Synthesis  sections help students see how the con-

cepts in the previously covered group of chapters are interrelated. These exercises are 

also intended to help students prepare for tests, in which they must solve problems 

without having the section or chapter title given as a clue. 

  Checkpoint  questions encourage students to pause and test their understanding 

of the concept explored within the current section. The answers to the Checkpoints are 

found at the end of the chapter so that students can confirm their knowledge without 

jumping too quickly to the provided answer. 

  Applications  are clearly identified as such in the text with a complete listing in 

the front matter. With Applications, students have the opportunity to see how physics 

concepts are experienced through their everyday lives. 

    icons identify opportunities for students to access additional information or 

explanation of topics of interest online. This will help students to focus even further on 

just the very fundamental, core concepts in their reading of the text.    

  ADDITIONAL RESOURCES FOR INSTRUCTORS AND STUDENTS 
   McGraw-Hill SmartBook™ 

 Powered by the intelligent and adaptive LearnSmart engine, SmartBook is the first and 

only continuously adaptive reading experience available today. Distinguishing what 

students know from what they don’t, and honing in on concepts they are most likely to 

forget, SmartBook personalizes content for each student. Reading is no longer a pas-

sive and linear experience but an engaging and dynamic one, in which students are 

more likely to master and retain important concepts, coming to class better prepared. 

SmartBook includes powerful reports that identify specific topics and learning objec-

tives students need to study. These valuable reports also provide instructors insight into 

how students are progressing through textbook content and are useful for identifying 

class trends, focusing precious class time, providing personalized feedback to students, 

and tailoring assessment. 

  How does SmartBook work?  Each SmartBook contains four components:   Preview, 

Read, Practice, and Recharge. Starting with an initial preview of each chapter and key 

learning objectives, students read the material and are guided to topics for which they 

need the most practice based on their responses to a continuously adapting diagnostic. 

Read and practice continue until SmartBook directs students to recharge important mate-

rial they are most likely to forget so as to ensure concept mastery and retention.    
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xxiv  PREFACE

        ALEKS® Math Prep for Physics 

 ALEKS Math Prep for  Physics  is a web-based program that provides targeted coverage 

of critical mathematics material necessary for student success in  Physics.  ALEKS uses 

artificial intelligence and adaptive questioning to assess precisely a student’s prepared-

ness and deliver personalized instruction on the exact topics the student is most ready 

to learn. Through comprehensive explanations, practice, and feedback, ALEKS enables 

students to quickly fill individual knowledge gaps in order to build a strong foundation 

of critical math skills. 

 Use ALEKS Math Prep for  Physics  during the first six weeks of the term to see 

improved student confidence and performance, as well as fewer dropouts. 

  ALEKS Math Prep for   Physics   Features: 

   •  Artificial Intelligence:  Targets gaps in student knowledge  

  •  Individualized Assessment and Learning:  Ensure student mastery  

  •  Adaptive, Open-Response Environment:  Avoids multiple-choice questions  

  •  Dynamic, Automated Reports:  Monitor student and class progress    

 Please visit  www.aleks.com/highered/math  for more information about ALEKS. ALEKS 

is a registered trademark of ALEKS Corporation.  

  McGraw-Hill Connect ®  Physics    

 McGraw-Hill Connect ®  Physics to accompany  Physics  offers online electronic home-

work, an eBook, and a myriad of resources for both instructors and students. Instructors 

can create homework with easy-to-assign, algorithmically generated problems from the 

text. This feature also offers the simplicity of automatic grading and reporting.

   • MCAT review materials are available online. These include links to practice tests. 

After the revised MCATs have been administered in 2015, actual questions from 

those past tests will be made available online for student practice.  

  • The end-of-chapter problems and Review & Synthesis exercises appear in the 

online homework system in diverse formats and with various tools.  

  • The online homework system incorporates new and exciting interactive tools and 

problem types: ranking problems, a graphing tool, a free-body diagram drawing 

tool, symbolic entry, a math palette, and multipart problems.  

  • Mimicking the interaction with a tutor or professor by providing students with 

detailed explanations and probing questions, several comprehensive tutorial prob-

lems cover the main topics of the course. These give students a way to help learn 

the concepts in a careful, thoughtful way and guide them to a deeper understanding 

of the material.    

 Instructors also have access to PowerPoint lecture outlines, an Instructor’s Resource 

Guide with solutions, suggested demonstrations, electronic images from the text, clicker 

questions, quizzes, tutorials, interactive simulations, and many other resources directly 

tied to text-specific materials in  Physics.  Students have access to self-quizzing, interac-

tive simulations, tutorials, selected answers for the text’s problems, and more. 

 See  www.mhhe.com/grr  to learn more and to register.  

  Online Physics Education Research Workbook 

 To help professors integrate new research on how students learn, Drs. Athula Herat 

and Ben Shaevitz of Slippery Rock University have written a workbook to accompany 

 Physics.  This workbook contains questions and ideas for classroom exercises that will 

get students thinking about physics in new and comprehensive ways. Students are led 

to discover physics for themselves, leading to a deeper intuitive understanding of the 
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material. A group of professors who use new ideas from Physics Education Research 

in the classroom reviewed the workbook and suggested changes and new problems. By 

providing the workbook in an online format, professors are free to use as much or little 

of the material as they choose.  

  Electronic Book Images and Assets for Instructors 

  Build instructional materials wherever, whenever, and however you want!  

 Accessed from the Connect Physics website to accompany  Physics,  an online digital 

library containing photos, artwork, interactives, and other media types can be used to cre-

ate customized lectures, visually enhanced tests and quizzes, compelling course websites, 

or attractive printed support materials. Assets are copyrighted by McGraw-Hill Higher 

Education, but can be used by instructors for classroom purposes. The visual resources in 

this collection include

   •  Art  Full-color digital files of all illustrations in the book can be readily  

incorporated into lecture presentations, exams, or custom-made classroom 

materials.   

  •  Photos  The photos collection contains digital files of photographs from the text, 

which can be reproduced for multiple classroom uses.  

  •  Worked Example Library, Table Library, and Numbered Equations Library  

Access the worked Examples, tables, and equations from the text in electronic for-

mat for inclusion in your classroom resources.    

 Also residing on the Connect Physics website are PowerPoint Lecture Outlines, ready-

made presentations that combine art and lecture notes for each chapter of the text.  

  Computerized Test Bank Online 

 A comprehensive bank of test questions in multiple-choice format at a variety of 

 difficulty levels is provided within a computerized test bank powered by McGraw-

Hill’s flexible electronic testing program—EZ Test Online ( www.eztestonline.com ). EZ 

Test Online allows you to create paper and online tests or quizzes in this easy-to-use 

program! 

 Imagine being able to create and access your test or quiz anywhere, at any time 

without installing the testing software. Now, with EZ Test Online, instructors can select 

questions from multiple McGraw-Hill test banks or create their own, and then either 

print the test for paper distribution or give it online. See  www.mhhe.com/grr  for more 

information.  

  Electronic Books 

 If you or your students are ready for an alternative version of the traditional textbook, 

McGraw-Hill brings you innovative and inexpensive electronic textbooks. By purchas-

ing E-books from McGraw-Hill, students can save as much as 50% on selected titles 

delivered on the most advanced E-book platforms available. 

 E-books from McGraw-Hill are smart, interactive, searchable, and portable, 

with such powerful built-in tools as detailed searching, highlighting, note taking, and 

 student-to-student or instructor-to-student note sharing. E-books from McGraw-Hill 

will help students to study smarter and quickly find the information they need. E-books 

also save students money. Contact your McGraw-Hill sales representative to discuss 

E-book packaging options.  
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xxvi  PREFACE

  Personal Response Systems 

 Personal response systems, or “clickers,” bring interactivity into the classroom or lec-

ture hall. Wireless response systems give the instructor and students immediate feed-

back from the entire class. The wireless response pads are essentially remotes that are 

easy to use and engaging, allowing instructors to motivate student preparation, interac-

tivity, and active learning. Instructors receive immediate feedback to gauge which con-

cepts students understand. Questions covering the content of the  Physics  text (formatted 

in PowerPoint) are available on the Connect Physics website for  Physics.   

  Instructor’s Resource Guide 

 The  Instructor’s Resource Guide  includes many unique assets for instructors, such as 

demonstrations, suggested reform ideas from physics education research, and ideas 

for incorporating just-in-time teaching techniques. The accompanying Instructor’s 

Solutions Manual includes answers to the end-of-chapter Conceptual Questions and 

complete, worked-out solutions for all the end-of-chapter Problems from the text. The 

Instructors Resource Guide is available in the Instructor Resources on the Connect 

Physics website to accompany  Physics.   

  Student Solutions Manual 

 The  Student Solutions Manual  contains complete worked-out solutions to selected 

end-of-chapter problems and questions, and to selected Review & Synthesis problems. 

The solutions in this manual follow the problem-solving strategy outlined in the text’s 

Examples and also guide students in creating diagrams for their own solutions. 

 For more information, contact a McGraw-Hill customer service representative at 

(800) 338–3987, or by email at  www.mhhe.com . To locate your sales representative, go 

to  www.mhhe.com  for Find My Sales Rep.     
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 C H A P T E R 

 1  Introduction    

 NASA’s Mars rover  Curiosity  
landed on the surface of Mars 
in August 2012. One of the 
mission’s primary objectives 
is to determine whether Mars 
ever had an  environment 
capable of supporting micro-
bial life. This photo taken by 
 Curiosity  shows a rock out-
crop that contains rounded 
pieces of gravel. The size, 
shape, and composition of 
the gravel led scientists to 
conclude that a stream once 
flowed here. 

 NASA’s many  successful 
missions to Mars have sent 
back a wealth of geologic 
data. However, in 1998, a 
simple mistake caused the 
loss of the  Mars Climate 
Orbiter  as it entered orbit 
around Mars. In this chapter, 
you will learn how to avoid 
 making this same mistake. 
(See p. 9.) 

  BIOMEDICAL 
APPLICATIONS  

  • Bone density and 

osteoporosis (Ex. 1.1) 

  • Surface area of alveoli in the 

lung (Ex. 1.7) 

  • Blood flow rates (Probs. 37, 

42, 75) 

  • Mass dependence of 

metabolic rate (Prob. 5) 

  • Smallest and largest 

organisms (Probs. 72, 73)    
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2  CHAPTER 1  Introduction

  • Algebra, geometry, and trigonometry (Appendix A) 
  • How to Succeed in Your Physics Class (see the text website )   

   1.1 WHY STUDY PHYSICS? 
  Physics is the branch of science that describes matter, energy, space, and time at the 

most fundamental level. Whether you are planning to study biology, architecture, medi-

cine, music, chemistry, or art, some principles of physics are relevant to your field. 

 Physicists look for patterns in the physical phenomena that occur in the universe. 

They try to explain what is happening, and they perform experiments to see if the pro-

posed explanation is valid. The goal is to find the most basic laws that describe the 

universe and to formulate those laws in the most precise way possible. 

 The study of physics is valuable for several reasons:

    • Since physics describes matter and its basic interactions, all natural sciences are 

built on a foundation of the laws of physics. A full understanding of chemistry 

requires a knowledge of the physics of atoms. A full understanding of biological 

processes in turn is based on the underlying principles of physics and chemistry. 

Centuries ago, the study of  natural philosophy  encompassed what later became 

the separate fields of biology, chemistry, geology, astronomy, and physics. Today 

there are scientists who call themselves biophysicists, chemical physicists, astro-

physicists, and geophysicists, demonstrating how thoroughly the sciences are 

intertwined.  

   • In today’s technological world, many important devices can be understood correctly 

only with a knowledge of the underlying physics. Just in the medical world, think of 

laser surgery, magnetic resonance imaging, instant-read thermometers, x-ray imag-

ing, radioactive tracers, heart catheterizations, sonograms, pacemakers, microsur-

gery guided by optical fibers, ultrasonic dental drills, and radiation therapy.   

   • By studying physics, you acquire skills that are useful in other disciplines. These 

include thinking logically and analytically; solving problems; making simplifying 

assumptions; constructing mathematical models; using valid approximations; and 

making precise definitions.  

   • Society’s resources are limited, so it is important to use them in beneficial ways 

and not squander them on scientifically impossible projects. Political leaders and 

the voting public are too often led astray by a lack of understanding of scientific 

principles. Can a nuclear power plant supply energy safely to a community? What 

is the truth about global climate change, the ozone hole, and the danger of radon 

in the home? By studying physics, you learn some of the basic scientific principles 

and acquire some of the intellectual skills necessary to ask probing questions and to 

formulate informed opinions on these important matters.  

   • Finally, by studying physics, we hope that you develop a sense of the beauty of the 

fundamental laws that describe the universe.      

  1.2 TALKING PHYSICS 
  Some of the words used in physics are familiar from everyday speech. This familiarity 

can be misleading, however, since the scientific definition of a word may differ consid-

erably from its common meaning. In physics, words must be precisely defined so that 

anyone reading a scientific paper or listening to a science lecture understands exactly 

what is meant. Some of the basic defined quantities, whose names are also words used 

in everyday speech, include time, length, force, velocity, acceleration, mass, energy, 

momentum, and temperature. 

 In everyday language,  speed  and  velocity  are synonyms. In physics, there is an 

important distinction between the two. In physics,  velocity  includes the  direction  of 

Concepts & Skills to Review

  A patient being prepared for 

magnetic resonance imaging 

(MRI). MRI provides a detailed 

image of the internal structures 

of the patient’s body. 
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 1.3  THE USE OF MATHEMATICS 3

motion as well as the distance traveled per unit time. When a moving object changes 

direction, its velocity changes even though its speed may not have changed. Confusing 

the scientific definition of  velocity  with its everyday meaning will prevent a correct 

understanding of some of the basic laws of physics and will lead to incorrect answers. 

  Mass,  as used in everyday language, has several different meanings. Sometimes 

 mass  and  weight  are used interchangeably. In physics, mass and weight are  not  inter-

changeable. Mass is a measure of inertia—the tendency of an object at rest to remain 

at rest or, if moving, to continue moving with the same velocity. Weight, on the other 

hand, is a measure of the gravitational pull on an object. (Mass and weight are discussed 

in more detail in Chapter 4.) 

 There are two important reasons for the way in which we define physical quanti-

ties. First, physics is an experimental science. The results of an experiment must be 

stated unambiguously so that other scientists can perform similar experiments and com-

pare their results. Quantities must be defined precisely to enable experimental measure-

ments to be uniform no matter where they are made. Second, physics is a mathematical 

science. We use mathematics to quantify the relationships among physical quantities. 

These relationships can be expressed mathematically only if the quantities being inves-

tigated have precise definitions.   

  1.3 THE USE OF MATHEMATICS 
  A working knowledge of algebra, trigonometry, and geometry is essential to the study 

of introductory physics. Some of the more important mathematical tools are reviewed in 

Appendix A. If you know that your mathematics background is shaky, you might want 

to test your mastery by doing some problems from a math textbook. You may find it 

useful to visit  www.mhhe.com  to explore the Schaum’s Outline series, especially the 

Schaum’s Outlines of  Precalculus, College Physics,  or  Physics for Pre-Med, Biology, 
and Allied Health Students.  

 Mathematical equations are shortcuts for expressing concisely in symbols relation-

ships that are cumbersome to describe in words. Algebraic symbols in the equations 

stand for quantities that consist of numbers  and units.  The number represents a mea-

surement and the measurement is made in terms of some standard; the unit indicates 

what standard is used. In physics, a number to specify a quantity is useless unless we 

know the unit attached to the number. When buying silk to make a sari, do we need a 

length of 5 millimeters, 5 meters, or 5 kilometers? Is the term paper due in 3 minutes, 

3 days, or 3 weeks? Systems of units are discussed in Section 1.5. 

 There are not enough letters in the alphabet to assign a unique letter to each quan-

tity. The same letter  V  can represent volume in one context and voltage in another. 

Avoid attempting to solve problems by picking equations that seem to have the correct 

letters. A skilled problem-solver understands  specifically  what quantity each symbol in 

a particular equation represents, can specify correct units for each quantity, and under-

stands the situations to which the equation applies.      

  Ratios and Proportions  �In the language of physics, the word    factor    is used fre-

quently, often in a rather idiosyncratic way. If the power emitted by a radio transmitter 

has doubled, we might say that the power has “increased by a factor of 2.” If the con-

centration of sodium ions in the bloodstream is half of what it was previously, we might 

say that the concentration has “decreased by a factor of 2,” or, in a blatantly inconsistent 

way, someone else might say that it has “decreased by a factor of   1 __ 
2
  .     ” The  factor  is the 

number by which a quantity is multiplied or divided when it is changed from one value 

to another. In other words, the factor is really a ratio. In the case of the radio transmit-

ter, if  P  0  represents the initial power and  P  represents the power after new equipment is 

installed, we write   

  P ___ 
P0

   =   2
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4  CHAPTER 1  Introduction

It is also common to talk about “increasing 5%” or “decreasing 20%.” If a quantity 

increases  n %, that is the same as saying that it is multiplied by a factor of 1  +  ( n /100). 

If a quantity decreases  n %, then it is multiplied by a factor of 1  -  ( n /100). For example, 

an increase of 5% means something is 1.05 times its original value, and a decrease of 

4% means it is 0.96 times the original value. 

 Physicists talk about increasing “by some factor” because it often simplifies a 

problem to think in terms of    proportions    .  When we say that  A  is proportional to  B  

(written  A  ∝  B ), we mean that if  B  increases by some factor, then  A  must increase by 

the same factor. In other words, the ratio of two values of  B  is equal to the ratio of the 

corresponding values of  A,  expressed as  B  2 / B  1   =   A  2 / A  1 . For instance, the circumference 

of a circle equals 2 π  times the radius:  C   =  2 π  r.  Therefore  C  ∝  r.  If the radius doubles, 

the circumference also doubles. The area of a circle is proportional to the  square  of the 

radius ( A   =   π  r  2 , so  A  ∝  r  2 ). The area must increase by the same factor as the radius 

 squared,  so if the radius doubles, the area increases by a factor of 2 2   =  4. Written as a 

proportion,  A  2 / A  1   =  ( r  2 / r  1 ) 
2   =  2 2   =  4.   

  Discussion � Quick check: The final density is a bit 

more than half the original density, as expected for a 40% 

decrease. 

  Practice Problem 1.1 �  Red Blood Cell Count 
 A hospital patient’s red blood count (RBC) is 5.0  ×  10 6  cells 

per microliter (5.0  ×  10 6   μ L  - 1 ) on Tuesday; on Wednesday it 

is 4.8  ×  10 6   μ L  - 1 . What is the percentage change in the RBC?   

 Example 1.1 

 Osteoporosis 

 Severe osteoporosis can cause the density of bone to 

decrease as much as 40%. What is the bone density of this 

degraded bone if the density of healthy bone is 1.5 g/cm 3 ? 

  Strategy � A decrease of  n % means the quantity is multi-

plied by 1  -  ( n /100).  

 Solution� 1.5 g/cm 3   ×  [1  -  (40/100)]  =  1.5 g/cm 3   ×  0.60  

=  0.90 g/cm 3   

 The volume of a sphere is proportional to the cube of its 

radius:

V ∝  r 3       

 Since the basketball radius is larger by a factor of 3.875, and 

volume is proportional to the cube of the radius, the new 

volume should be bigger by a factor of 3.875 3  ≈ 58.2.  

  Discussion � A slight variation on the solution is to write 

out the proportionality in terms of ratios of the correspond-

ing sides of the two equations:

  
Vb ___ Vt

   =   
  4 _ 
3
  π rb 

3 
 _____ 

  4 _ 
3
  π rt 

3 
   =   (   

rb __ rt
   )  

3
       

 Substituting the ratio of  r  b  to  r  t  yields

  
Vb ___ Vt

   =  3.1875 3  ≈ 58.2      

 which says that  V  b  is approximately 58.2 times  V  t . 

 Example 1.2 

 Effect of Increasing Radius on the Volume 
of a Sphere 

 The volume of a sphere is given by the equation

V =   4 __ 
3
  π r 3       

 where  V  is the volume and  r  is the radius of the sphere. If 

a basketball has a radius of 12.4 cm and a tennis ball has a 

radius of 3.20 cm, by what factor is the volume of the bas-

ketball larger than the volume of the tennis ball? 

  Strategy � The problem gives the values of the radii for the 

two balls. To keep track of which ball’s radius and volume 

we mean, we use subscripts “b” for basketball and “t” for 

tennis ball. The radius of the basketball is  r  b  and the radius 

of the tennis ball is  r  t . Since   4 __ 
3
        and  π  are constants, we can 

work in terms of proportions.  

  Solution � The ratio of the basketball radius to that of the 

tennis ball is

  
rb __ rt

   =   12.4 cm _______ 
3.20 cm

   = 3.875      

continued on next page

gia1215x_ch01_001-024.indd   4gia1215x_ch01_001-024.indd   4 8/9/14   8:38 PM8/9/14   8:38 PM

Final PDF to printer



1.4  SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES 5

  CHECKPOINT 1.3 

 If the radius of the sphere is increased by a factor of 3, by what factor does 
the volume of the sphere change?      

1.4 SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES 
  In physics, we deal with some numbers that are very small and others that are very 

large. It can get cumbersome to write numbers in conventional decimal notation. In 

   scientific notation    ,  any number is written as a number between 1 and 10 times an inte-

ger power of ten. Thus the radius of Earth, approximately 6 380 000 m at the equator, 

can be written 6.38  ×  10 6  m; the radius of a hydrogen atom, 0.000 000 000 053 m, can 

be written 5.3  ×  10  - 11  m. Scientific notation eliminates the need to write zeros to locate 

the decimal point correctly. 

 In science, a measurement or the result of a calculation must indicate the    precision  
to which the number is known. The precision of a device used to measure something is 

limited by the finest division on the scale. Using a meterstick with millimeter divisions 

as the smallest separations, we can measure a length to a precise number of millimeters 

and we can estimate a fraction of a millimeter between two divisions. If the meterstick 

has centimeter divisions as the smallest separations, we measure a precise number of 

centimeters and estimate the fraction of a centimeter that remains.      

  Significant Figures  �The most basic way to indicate the precision of a quantity is to 

write it with the correct number of    significant figures    .  The significant figures are all the 

digits that are known accurately plus the one estimated digit. If we say that the distance 

from here to the state line is 12 km, that does not mean we know the distance to be  exactly
12 kilometers. Rather, the distance is 12 km  to the nearest kilometer.  If instead we said 

that the distance is 12.0 km, that would indicate that we know the distance to the nearest 

tenth  of a kilometer. More significant figures indicate a greater degree of precision.      

  Practice Problem 1.2 � Power Dissipated by a 
Lightbulb 
 The electric power  P  dissipated by a lightbulb of resistance 

R  is  P   =   V  2 / R,  where  V  represents the line voltage. During 

a brownout, the line voltage is 10.0% less than its normal 

value. How much power is drawn by a lightbulb during the 

brownout if it normally draws 60.0 W (watts)? Assume that 

the resistance does not change.   

Example 1.2 continued

Learn how to use the button 

on your calculator ( usually 

labeled EE) to enter a number 

in  scientific notation. To enter 

1.2 × 108, press 1.2, EE, 8.

 Rules for Identifying Significant Figures 

    1. Nonzero digits are always significant.  

   2. Final or ending zeros written to the right of the decimal point are significant.  

   3. Zeros written to the right of the decimal point for the purpose of spacing the 

decimal point are not significant.  

   4. Zeros written to the left of the decimal point may be significant, or they may 

only be there to space the decimal point. For example, 200 cm could have one, 

two, or three significant figures; it’s not clear whether the distance was mea-

sured to the nearest 1 cm, to the nearest 10 cm, or to the nearest 100 cm. On 

the other hand, 200.0 cm has four significant figures (see rule 5). Rewriting the 

number in scientific notation is one way to remove the ambiguity. In this book, 

when a number has zeros to the left of the decimal point, you may  assume a 
minimum of two significant figures.   

   5. Zeros written between significant figures are significant.   
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6  CHAPTER 1  Introduction

  (c) The 9 and 5 in 9500 g are significant, but the zeros are 

ambiguous. This number could have two, three, or four sig-

nificant figures. If we take the most cautious approach and 

assume the zeros are not significant, then the number in sci-

entific notation is 9.5  ×  10 3  g.  

  (d) The final zero in 950.0  ×  10 1  mL is significant since it 

comes after the decimal point. The zero to its left is also sig-

nificant since it comes between two other significant digits. 

The result has four significant figures. The number is not in 

standard  scientific notation since 950.0 is not between 1 and 

10; in scientific notation we write 9.500  ×  10 3  mL.    

  Discussion � Scientific notation clearly indicates the num-

ber of significant figures since all zeros are significant; none 

are used only to place the decimal point. In (c), if the mea-

surement was made to the nearest gram, we would write 

9.500  ×  10 3  g to show that the zeroes are significant. 

  Practice Problem 1.3 � Identifying �Significant �Figures 
 State the number of significant figures in each of these mea-

surements and rewrite them in standard scientific notation. 

   (a) 0.000 105 44 kg     (b) 0.005 800 cm     (c) 602 000 s     

 Example 1.3 

 Identifying the Number of Significant Figures 

 For each of these values, identify the number of significant 

figures and rewrite it in standard scientific notation. 

    (a) 409.8 s  

   (b) 0.058 700 cm  

   (c) 9500 g  

   (d) 950.0  ×  10 1  mL   

  Strategy � We follow the rules for identifying significant 

figures as given. To rewrite a number in scientific notation, 

we move the decimal point so that the number to the left of 

the decimal point is between 1 and 10 and compensate by 

multiplying by the appropriate power of ten.  

  Solution �   (a) All four digits in 409.8 s are significant. 

The zero is between two significant figures, so it is signifi-

cant. To write the number in scientific notation, we move 

the decimal point two places to the left and compensate by 

multiplying by 10 2 : 4.098  ×  10 2  s.  

  (b) The first two zeros in 0.058 700 cm are not significant; 

they are used to place the decimal point. The digits 5, 8, and 

7 are significant, as are the two final zeros. The answer has 

five significant figures: 5.8700  ×  10  - 2  cm.  

 Significant Figures in Calculations 

    1. When two or more quantities are added or subtracted, the result is as precise as the 

least precise  of the quantities (Example 1.4). If the quantities are written in scien-

tific notation with different powers of ten, first rewrite them with the same power 

of ten. After adding or subtracting, round the result, keeping only as many decimal 

places as are significant in  all  of the quantities that were added or subtracted.  

   2. When quantities are multiplied or divided, the result has the same number of 

significant figures as the quantity with the  smallest number of significant 
 figures  (see Example 1.5).  

   3. In a series of calculations, rounding to the correct number of significant figures 

should be done only at the end,  not   at each step.  Rounding at each step would 

increase the chance that roundoff error could snowball and adversely affect the 

accuracy of the final answer. It’s a good idea to keep  at least two  extra signifi-

cant figures in calculations, then round at the end.   

known to the nearest 0.000 01 s, 0.0698 s is known to the 

nearest 0.0001 s, and 1103.2 s is known to the nearest 0.1 s. 

Therefore the least precise is 1103.2 s. The sum has the 

same precision; it is known to the nearest tenth of a second.  

 Example 1.4 

 Significant Figures in Addition 

 Calculate the sum 44.560 05 s  +  0.0698 s  +  1103.2 s. 

  Strategy � The sum cannot be more precise than the least 

precise of the three quantities. The quantity 44.560 05 s is 

continued on next page
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1.4  SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES 7

When an integer, or a fraction of integers, is used in an equation, the precision of 

the result is not affected by the integer or the fraction; the number of significant figures 

is limited only by the measured values in the problem. The fraction   1 __ 
2
        in an equation is 

exact;  it does not reduce the number of significant figures to one. In an equation such 

as  C   =  2 π  r  for the circumference of a circle of radius  r,  the factors 2 and  π  are exact. 

We use as many digits for  π  as we need to maintain the precision of the other quantities.  

  Order-of-Magnitude Estimates  �Sometimes a problem may be too complicated to 

solve precisely, or information may be missing that would be necessary for a precise 

calculation. In such a case, an    order-of-magnitude    solution is the best we can do. By 

 order of magnitude,  we mean “roughly what power of ten?” An order of magnitude cal-

culation is done to at most one significant figure. Even when a more precise solution is 

feasible, it is often a good idea to start with a quick, “   back-of-the-envelope estimate   ” 

(a calculation so short that it could easily fit on the back of an envelope). Why? Because 

we can often make a good guess about the correct order of magnitude of the answer to 

a problem, even before we start solving the problem. If the answer comes out with a 

different order of magnitude, we go back and search for an error. Suppose a problem 

concerns a vase that is knocked off a fourth-story window ledge. We can guess by expe-

rience the order of magnitude of the time it takes the vase to hit the ground. It might be 

1 s, or 2 s, but we are certain that it is  not  1000 s or 0.000 01 s. 

  Solution � According to the calculator,   

   44.560 05  +  0.0698  +  1103.2  =  1147.829 85  

 We do  not  want to write all of those digits in the answer. 

That would imply greater precision than we actually have. 

Rounding to the nearest tenth of a second, the sum is written   

   =  1147.8 s   

 which has five significant figures.  

  Discussion � Note that the least precise measure-

ment is not necessarily the one with the fewest num-

ber of significant figures. The least precise is the one whose 

rightmost significant figure represents the largest unit: the 

“2” in 1103.2 s represents 2 tenths of a second. In addition 

or subtraction, we are concerned with the precision rather 

than the number of significant figures. The three quantities 

to be added have seven, three, and five significant figures, 

respectively, but the sum has five significant figures. 

  Practice Problem 1.4 � Significant Figures 
in Subtraction 
 Calculate the difference 568.42 m  -  3.924 m and write the 

result in scientific notation. How many significant figures 

are in the result?   

Example 1.4 continued

  Discussion � Writing the answer as 109.0766 m would 

give the false impression that we know the answer to a preci-

sion of about 0.0001 m, whereas we actually have a preci-

sion of only about 1 m. 

 Note that although both factors were known to two dec-

imal places, our solution is properly given with no decimal 

places. It is the number of significant figures that matters 

in multiplication or division. In scientific notation, we write 

1.09  ×  10 2  m. 

  Practice Problem 1.5 � Significant Figures in Division 
 Write the solution to 28.84 m divided by 6.2 s with the cor-

rect number of significant figures.   

 Example 1.5 

 Significant Figures in Multiplication 

 Find the product of 45.26 m/s and 2.41 s. How many signifi-

cant figures does the product have? 

  Strategy � The product should have the same number of 

significant figures as the factor with the least number of sig-

nificant figures.  

  Solution � A calculator gives   

  45.26  ×  2.41  =  109.0766   

 Since the answer should have only three significant figures, 

we round the answer to   

  45.26 m/s  ×  2.41 s  =  109 m    
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8  CHAPTER 1  Introduction

  CHECKPOINT 1.4 

 What are some of the reasons for making order-of-magnitude estimates?      

  1.5 UNITS 
  A    metric system    of units has been used for many years in scientific work and in 

European countries. The metric system is based on powers of ten ( Fig. 1.1 ). In 1960, 

the General Conference of Weights and Measures, an international authority on units, 

proposed a revised metric system called the  Système International d’Unités  in French 

(abbreviated    SI   ), which uses the meter (m) for length, the kilogram (kg) for mass, the 

second (s) for time, and four more base units ( Table 1.1 ).    Derived units    are constructed 

from combinations of the base units. For example, the SI unit of force is kg˙m/s 2  

(which can also be written kg˙m˙s  - 2 ); this combination of units is given a special 

name, the newton (N), in honor of Isaac Newton. The newton is a derived unit because 

it is composed of a combination of base units. When units are named after famous 

scientists, the name of the unit is written with a lowercase letter, even though it is 

based on a proper name; the  symbol  for the unit is written with an uppercase letter. 

The inside front cover of the book has a complete listing of the derived SI units used 

in this book.   

 As an alternative to explicitly writing powers of ten, SI uses prefixes for units to 

indicate power of ten factors.  Table 1.2  shows some of the powers of ten and the SI pre-

fixes used for them. These are also listed on the inside front cover of the book. Note that 

when an SI unit with a prefix is raised to a power, the prefix is  also  raised to that power. 

For example, 8 cm 3   =  2 cm  ×  2 cm  ×  2 cm.  

 SI units are preferred in physics and are emphasized in this book. Since other units 

are sometimes used, we must know how to convert units. Various scientific fields, even 

in physics, sometimes use units other than SI units, whether for historical or practical 

 Figure 1.1 Scientific notation uses powers of ten to express quantities that have a wide range of values.  

Silicon atoms (radius 10–10 m) A child (height 100 m) Earth (diameter 107 m) A spiral galaxy

(diameter 1021 m) 

10–15 10–10 10–5 100 105 1010 1015 1020 1025

HIV (diameter 10–7 m)

invading a T lymphocyte

(a type of white blood cell) 

The Duomo (cathedral) in

Florence, Italy (height 102 m) 

The Sun (diameter 109 m) 

Distance to quasar

observed by Hubble

Telescope (1026 m) 

Hydrogen

nucleus

(radius 10–15 m) 
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 1.5  UNITS 9

reasons. For example, in atomic and nuclear physics, the SI unit of energy (the joule, J) 

is rarely used; instead the energy unit used is usually the electron-volt (eV). Biologists 

and chemists use units that are not ordinarily used by physicists. One reason that SI is 

preferred is that it provides a common denominator—all scientists are familiar with the 

SI units. 

 In most of the world, SI units are used in everyday life and in industry. In the 

United States, however, the U.S. customary units—sometimes called English units—

are still used. The base units for this system are the foot, the second, and the pound. The 

pound is legally defined in the United States as a unit of mass, but it is also commonly 

used as a unit of force (in which case it is sometimes called  pound-force ). Since mass 

and force are entirely different concepts in physics, this inconsistency is one good rea-

son to use SI units. 

 In the autumn of 1999, to the chagrin of NASA, a $125 million spacecraft was 

destroyed as it was being maneuvered into orbit around Mars. The company building 

the booster rocket provided information about the rocket’s thrust in U.S. customary 

units, but the NASA scientists who were controlling the rocket thought the figures pro-

vided were in metric units. Arthur Stephenson, chairman of the  Mars Climate Orbiter  

Mission Failure Investigation Board, stated that, “The ‘root cause’ of the loss of the 

spacecraft was the failed translation of English units into metric units in a segment 

of ground-based, navigation-related mission software.” After a journey of 122 million 

miles, the  Climate Orbiter  dipped about 15 miles too deep into the Martian atmosphere, 

causing the propulsion system to overheat. The discrepancy in units unfortunately 

caused a dramatic failure of the mission.      

  Converting Units  �If the statement of a problem includes a mixture of different units, 

the units must be converted to a single, consistent set before the problem is solved. 

Quantities to be added or subtracted  must be expressed in the same units.  Usually the 

best way is to convert everything to SI units. Common conversion factors are listed on 

the inside front cover of this book. 

 Examples 1.6 and 1.7 illustrate the technique for converting units. The quantity to 

be converted is multiplied by one or more conversion factors written as a fraction equal 

to 1. The units are multiplied or divided as algebraic quantities. 

What happened to the 
Mars Climate Orbiter?

  Quantity    Unit Name    Symbol    Definition  

 Length  meter  m  The distance traveled by light in vacuum during a time interval of 

1/299 792 458 s. 

 Mass  kilogram  kg  The mass of the international prototype of the kilogram. 

 Time  second  s  The duration of 9 192 631 770 periods of the radiation corresponding to the 

transition between the two hyperfine levels of the ground state of the 

cesium-133 atom. 

 Electric current  ampere  A  The constant current in two long, thin, straight, parallel conductors placed 

1 m apart in vacuum that would produce a force on the conductors of 

2  ×  10  - 7  newtons per meter of length. 

 Temperature  kelvin  K  The fraction 1/273.16 of the thermodynamic temperature of the triple point 

of water. 

 Amount of substance  mole  mol  The amount of substance that contains as many elementary entities as there 

are atoms in 0.012 kg of carbon-12. 

 Luminous intensity  candela *   cd  The luminous intensity, in a given direction, of a source that emits radia-

tion of frequency 540  ×  10 12  Hz and that has a radiant intensity in that 

direction of 1/683 watts per steradian. 

 Table 1.1 SI Base Units 

  *Not used in this book  

  Prefix 
 (abbreviation)  

  Power 
of Ten  

 peta- (P)  10 15  

 tera- (T)  10 12  

 giga- (G)  10 9  

 mega- (M)  10 6  

 kilo- (k)  10 3  

 deci- (d)  10  - 1  

 centi- (c)  10  - 2  

 milli- (m)  10  - 3  

 micro- ( μ )  10  - 6  

 nano- (n)  10  - 9  

 pico- (p)  10  - 12  

 femto- (f)  10  - 15  

 Table 1.2 SI 
Prefixes 
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